Construction of $\mu$-Limit Sets
نویسندگان
چکیده
The µ-limit set of a cellular automaton is a subshift whose forbidden patterns are exactly those, whose probabilities tend to zero as time tends to infinity. In this article, for a given subshift in a large class of subshifts, we propose the construction of a cellular automaton which realizes this subshift as µ-limit set where µ is the uniform Bernoulli measure.
منابع مشابه
Construction of mu-Limit Sets of Two-dimensional Cellular Automata
We prove a characterisation of μ-limit sets of two-dimensional cellular automata, extending existing results in the one-dimensional case. This sets describe the typical asymptotic behaviour of the cellular automaton, getting rid of exceptional cases, when starting from the uniform measure. 1998 ACM Subject Classification F.1.1 Models of Computation
متن کاملTHE DIRECT AND THE INVERSE LIMIT OF HYPERSTRUCTURES ASSOCIATED WITH FUZZY SETS OF TYPE 2
In this paper we study two important concepts, i.e. the direct andthe inverse limit of hyperstructures associated with fuzzy sets of type 2, andshow that the direct and the inverse limit of hyperstructures associated withfuzzy sets of type 2 are also hyperstructures associated with fuzzy sets of type 2.
متن کاملEmbedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملApplications of fuzzy $e$-open sets
The aim of this paper is to introduce and study the notions of fuzzy upper $e$-limit set, fuzzy lower $e$-limit set and fuzzy $e$-continuously convergent functions. Properties and basic relationships among fuzzy upper $e$-limit set, fuzzy lower $e$- limit set and fuzzy $e$-continuity are investigated via fuzzy $e$-open sets.
متن کاملRough sets theory in site selection decision making for water reservoirs
Rough Sets theory is a mathematical approach for analysis of a vague description of objects presented by a well-known mathematician, Pawlak (1982, 1991). This paper explores the use of Rough Sets theory in site location investigation of buried concrete water reservoirs. Making an appropriate decision in site location can always avoid unnecessary expensive costs which is very important in constr...
متن کامل